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1 INTRODUCTION 

1.1 Narrow fairways 
The vessel traffic on narrow fairways is subject to 
different restrictions: speed limit, overtaking ban, 
passing ban and others. When ships must go one by 
one they must maintain minimum distance between 
each other. This distance is specific for each basin, 
for example on the Świnoujście – Szczecin fairway, 
the minimum distance between successive vessels is 
equal to 2 cable. 

1.2 Vessel traffic intensity 
The intensity of vessel traffic is measured by a num-
ber of vessels passing in a time unit (Jagniszczak & 
Uchacz 2002, Gucma 2003). When ships report in-
dividually and independently of one another, the in-
tensity can be describing by Poisson distribution 
(Ciletti 1978, Fujii 1977, Montgomery & Runger 
1994). In the case when vessel traffic is disturbed, 
the density can be determined by using the convolu-
tion method. In earlier works (Kasyk 2006) author 
presented solutions of different problems using par-
ticular parts of  the convolution method. And this 
paper is the first application of full convolution 
method worked out by author (Kasyk 2008). 

 

2 DETERMINATION OF INTENSITY 

2.1 Component random variables 
According with the convolutions method (Kasyk 
2008, Nowak 2002) it’s necessary to isolate particu-
lar random variables. The time difference between 
leavings the fairway section with the disturbance, by 
successive ships is equal to: 

( ) ( )B A B ADT X Y Y W W= + − + −  (1) 

where X denotes the waiting time for the reporting 
of the successive fairway unit in none disturbance 
traffic; Y denotes the time necessary to change of 
vessel traffic parameters; W is the time necessary to 
cover the fairway section on which the order to 
maintain minimum distance between successive ves-
sels exist. The indexes A and B by names of random 
variables denotes realisations of particular variables 
for different successive units. 

The variable X has an exponential distribution 
(Ciletti 1978, Fujii 1977, Gucma 2003, Kasyk 2004, 
Nelson 1995). In this paper the variable Y has a 
normal distribution (Kasyk 2006). When the ship is 
forced to sail after the more slowly unit, she must 
reduce her own speed. The longest time necessary to 
cover the fairway section on which the order to 
maintain minimum distance exist is equal to d/vav, 
where d is the length of this section and vav is the 
average velocity in this section. While the shortest 
time of covering this fairway section amounts d/vmax, 
where vmax is the highest velocity in this section. On 
narrow fairways, usually the average velocity 
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doesn’t differ much from the maximum velocity. 
Hence the variable W can be described by an uni-
form distribution on the interval from d/vmax to d/vav. 

2.2 Probability distribution of vessel traffic 
intensity 

Using all operations of the convolution method 
(Kasyk 2008), p.d.f. of variable 1/T has been deter-
mined. This variable, as the inverse of the time be-
tween leavings the fairway section by successive 
ships, denotes the number of ships leaving the spe-
cial section in the time unit. This is a continuous var-
iable and its probability density function f(x) is giv-
en by the form presented below. In this form the 
function erf(z) appears. It is the integral of the 
Gaussian distribution, given by: 

( ) 2
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Integrating the function f(x) in corresponding limits 
we obtain the probability mass function of the varia-
ble I (the vessel traffic intensity after leaving the 
fairway section with the order to maintain minimum 
distance): 

( )
0,5

0,5

( )
n

n

P I n f x dx
+

−

= = ∫  (4) 

3 ANALYSIS OF DEPENDENCE DENSITY 
FUNCTION ON TRAFFIC PARAMETERS 

3.1 Traffic parameters 
Function f(x) depends on three parameters: λ, σ and 
the difference r = (b – a).  1/λ is the mean of the var-
iable X. σ is the standard deviation of the variable Y 

and the interval [a , b] is the range of  the variable 
W. Figure 1 presents the dependence of f(x) on the 
parameter λ, with established σ and r. 

All parameters have been examined in ranges cor-
responding with real conditions. Hence r is located 
between 0.1 hour and 2 hours, σ stays within the 
range from 0.01 hour to 1 hour and λ is from the in-
terval [0.1/h, 10/h]. 

 
Figure 1. Dependence of function f(x) on parameter λ. 

 
Fig. 2 presents the dependence of the function f(x) 
on the parameter σ, with established λ and r. 

 
Figure 2. Dependence of function f(x) on parameter σ. 

 
Figure 3 presents the dependence of the function f(x) 
on the parameter r, with established λ and σ. 
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Figure 3. Dependence of function f(x) on parameter  r. 

 
Function f(x) changes little for different values σ 

and r (a bit more for σ). With the change of value of 
λ the function f(x) changes a lot. Especially when λ 
closes to 0, the curve f(x) has greater values and it 
has maximum for the argument closer 0.  

3.2 Comparison between disturbed intensity and 
random intensity 

The vessel traffic intensity on the exit of the fairway 
section with the order to maintain minimum distance 
is different than the vessel traffic intensity on the en-
trance to this section. The greatest differences ap-
pear in the case when the exponential distribution 
parameter has value greater than 1 (the higher value 
of λ the bigger differences between intensities) and 
values of parameters σ and r are high (Fig.4). The 
closer 0  λ, the less differences between intensities. 
And when  σ and r close to 0, then density function 
curves of  intensities almost coincide (Fig.5). 

 
Figure 4. Difference between intensities for large λ 

 

 
Figure 5. Difference between intensities for λ closing to 0 

 
In above figures the probability density function of 
the vessel traffic intensity on the entrance to the 
fairway section on which the order to maintain min-
imum distance between successive vessels exist, is 
marked by dashed line.  

3.3 Extreme case 
In the case, when there are so many ships that they 
sail one by one with the minimum distance dmin be-
tween each other, then the intensity is equal to: 

min 1
3600av

dI
v s

= ⋅  (5) 

where dmin is expressed in metres; the average vessel 
speed vav is expressed in metres per second. 

4 CONCLUSIONS 

Intensity of the disturbed vessel traffic, as a number 
of reports in a time unit, has been approximated by 
continuous random variable 1/T. Applying the con-
volution method the density function of variable 1/T 
has been determined. 

If disturbances in fairway vessel traffic are big 
(values of parameters σ and r are high), then there 
are large differences between the vessel traffic inten-
sity on the exit of the fairway section with the order 
to maintain minimum distance and the vessel traffic 
intensity on the entrance to this section. 

For practical uses, the random variables separated 
in this model, should be verified with measurements 
or simulations. 
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